

Federal Ministry of Education and Research

Helmholtz Centre Potsdam **GFZ GERMAN RESEARCH CENTRE** FOR GEOSCIENCES

A Draft of Guidance from the Scientific Research Programme GEOTECHNOLOGIEN to Underpin the Implementation of the CCS Directive in Germany

Axel Liebscher, Martin Streibel and Birgit Schöbel Helmholtz Centre Potsdam, GFZ - German Research Centre for Geosciences, **Centre for Geological Storage, Potsdam, Germany**

Introduction

Within the GEOTECHNOLOGIEN funding scheme for geological CO, storage by the Federal Ministry of Education and Research (BMBF) in Germany 32 projects have been funded with a budget of 58,3 M€ excluding industry funds from 2005 to 2014. In 2012 the German government passed the transposition of the EU CCS Directive 2009/31/EG – Das Kohlendioxid-Speicherungsgesetz (KSpG). Beside differences of both laws Annexe 1 and 2 match which define the criteria how to set up and monitor a CO₂ storage. In 2012 an umbrella project called AUGE has been launched in order to compile and summarise the results of the projects to underpin the Annexe scientifically. This presentation gives a draft overview of the project results ordered by the KSpG with an assessment of the development status.

Nomenclature status:

prototype: method developed in the project based on the physical principal, available to developing research groups

demonstration: method well tested within a project, in principal available to the storage community

established: method well tested before or available on the market

Summary

The knowledge base of CO₂ storage research is good enough to start a demonstration project (injection of 1 Mt CO_2). It is actually needed to progress the technology.

Annex 1: Criteria for the characterisation and assessment of the potential storage complex and surrounding area

1.1 Data collection

Project	Methode	ology	Status		
CO₂SINK CLEAN	geologic fi hydrologic	eld mapping, well logs for near well parameters, field experiments, usage of different reactive tracers	established		
CO₂MAN CO₂CRS CO₂DEPTH PROTECT CSEGR COMICOR	4D seismic seismic da 3D kinema (re)activat	ts at pilot site Ketzin, improvement of analysis of ta, approach of combining seismic data analysis with tic modelling for an improved understanding of fault ion	established- demon- stration		
	determinat compositio	tion of petrophysical reservoir parameters and mineral n , batch experiments for CO_2 -rock interaction	established		
There is a good understanding of the reactivity of individual minerals with $scCO_2-H_2O$ which allows a correct evaluation of the reservoir rock. However in batch experiments rocks show a higher reactivity than in real life (coring at Ketzin). Chemical modelling is limited due to missing thermodynamic constants and kinetic rates.					
CO₂SONO- StRA	batch experiments with cores, $scCO_2$, formation fluid and impurities NO_2 , SO_2 and O_2 showed some damage within the 28 days testing period – concentra- tion of impurities used were too big than today's capture technology suggest				
CO ₂ SINK CO ₂ MAN RECOBIO CO ₂ BIOPERM	At Ketzin the microbiological community in the dump of the well changed during injection but still exists. An influence on the permeability of cores infiltrated by microorganisms has not been proven jet but is a focus of $CO_2BIOPERM$.				
CO ₂ TRAP COSMOS CO ₂ SEALS	 batch experiments of scCO₂-water-clay show a very low reaction rate: alteration are insignificant for the tested time periods that clay stones with a significant amount of Smectit, Illite and Kaolinite have a high CO₂ sorption potential 				
able 1: Sumr	mary of depl	oyed and developed characterisation techniques.			
	ig the thr	ee-dimensional static geological earth mod			
Project		Methodology	Status		
CO ₂ SINK, CLEAN, BRINE, CO ₂ MOPA, CO ₂ MAN		Among others Petrel, GOCAD, EarthVision are software packages to generate static 3D geological models.	established		
Geo-statistic is needed to derive petrophysical parameters from few drilling cores for the whole modelling grid but therefore cannot reproduce preferential pathways of the CO_2 plume flow. An appropriate fault model needs to be developed and implemented. The static geological model as a base for dynamic model runs will be improved by further monitoring data with ongoing CO_2 injection and other measurements. The approaches "one geological model fits all" versus "a number of simplified geological models for different parameters" need to be considered. Fig. 1.					

1.3 Characterisation of the storage dynamic behaviour and sensitivity characterisation

Project	Modelling activity	Status
Benchmark, CO ₂ SINK, CO ₂ MAN,	Development of fully coupled dynamic models to simulate the effects of injection of CO ₂ into the subsurface: multi-	demon-
$CO_{A}RINA$, CLEAN,	phase flow, heat transport, hydrodynamics.	50 000

BRINE, CO ₂ MOPA	geomechanics and chemistry with various simulators and	
	sub-models -> THMC models, shown in Fig. 1.	

Individual modules of model systems need to be evaluated by benchmarks. Models need to be calibrated with monitoring data.

- Prediction of the CO₂ flow in the subsurface will be very uncertain as it depends strongly on small-scale heterogeneity and large-scale geologic features
- Prediction of pressure development in the storage complex can be given with some confidence as it depends mainly on the average permeability.
- Prediction on the storage capacity can be estimated with some uncertainty as it depends on the injection rate, depth, temperature, salinity, permeability.
- Prediction on geochemistry and geomechanics can be estimated with a big uncertainty mainly due to missing data and missing fundamental constants.

As a prerequisite for a comprehensive risk analysis within the risk assessment simplified versions of models deployed in characteri-sation should be used and coupled in an statistical approach.

Table 3: Brief summary of methods to establish a dynamic model as described in Figure 1.

Table 2: Brief summary of methods to establish a static geolgocial model.

Wellbore integrity

Project	Part	Technology	Status
CSEGR COSMOS	well fitting	steel and other materials are available in which are resistant against corrosion	established
COSMOS COBOHR COBRA	cement	advanced cements have been developed to withstand the corrosion by carbonic acid by an increase of NaCl or replacement of Portland cement clinker with quartz powder or flue ash	prototype
COBOHR COBRA	cement	elimination of imperfections in wellbore cements by optimizing 1. the viscosity/ hardening of the cement using different by-products 2. the filling technology	prototype
	·		

Oil and gas production proves that wellbores are safe for 50+ years, new materials suggest that for CO_2 storage as well.

The conservation of the technical integrity of abandoned wells for more than hundred of years remains unproven. A higher level of security can be achieved by introducing natural barriers wherever possible (Fig. 2), CLEAN.

Table 4: Brief summary on wellbore integrity.

Fig. 1: Workflow for dynamic modelling.

Project	Parameter monitored	Technology	Location	Status				
Verification measurements								
Surface and	above			,				
MONACO CO ₂ MAN	CO ₂ concentration	FTIR, Eddy covariance, CO ₂ sensors in the soil - down to 20 m	on surface of storage area	established				
		Monitoring		'				
Drinking wa	ater aquifers							
CO₂Leckage, MONACO, SAMOLEG	fluid electrical resistance, salinity, chemical parameter	established ground water monitoring tools, long electrodes ERT	drinking water aquifer	established				
BRINE MONACO	salinity – salt water induced zone	electrical and magnetic fields (EM)	down to 200 m	established				
Borehole	'			'				
CO ₂ MAN	p/T		wellhead and in wellbore	established				
CO ₂ MAN	Т	distributed temperature sensing	wellbore	demon- stration				
COBRA	cement permittivity	time delayed resistivity	wellbore	prototype				
CO ₂ MAN	various parameter of the wellbore	various	wellbore	established				
Intermedia of storage r	te region – last eservoir	drinking water aquifer to cap	o rock					
CO₂MAN BRINE	electric resistivity of fluids	ERT	in wellbore and or surface	demon- stration				
CO₂MAN CHEMKIN	concentration of substances	gas membrane sampling device connect to gas chromatograph	in wellbore	demon- stration				
Reservoir				1				
MONACO CO ₂ MAN	surface deformation	satellite imagery for movement of reflectors, GPS measurements of emitters	surface of storage area	established				
CO ₂ MAN	seismic waves	active seismics	surface of storage area, wellbore	established				
CO ₂ MAN	neutron scattering, electrical resistivity, CO ₂ saturation	pulsed neutron gamma, ERT	wellbore	demon- stration				
CO ₂ MAN	seismic waves	geophones, passive seismics	wellbore, surface	established				

Fig. 2: Schematic showing the use of clay or salt as an additional barrier in wellbore abandonment.

Annex 2: Criteria for establishing and updating the monitoring plan and for post-closure monitoring

Establishing the monitoring plan

In the GEOTECHNOLOGIEN Program technologies have been developed and applied which allow for a comprehensive monitoring on all levels. It is most efficient to

- implement the monitoring strategy based on the site characterisation, close to planes of weakness,
- implement a hierarchical approach, with low resolution spatial measurements with a relatively high timely resolution which are complemented with high resolution spatial measurements at individual locations where anomalies have been detected.

Most challenging is the monitoring of the region between the cap rock of the CO₂ storage reservoir and the drinking water aquifers as CO_2 can spread laterally in overlaying aquifers, especially

- the task to find new leakage pathways if site characterisation has given no indication,
- the detection of fluid migration in the vicinity of the storage with elevated pressure levels.

Surface measurements of CO₂ should be seen as verification measurements rather than monitoring measurements. They need to be done but probably most damage has been done once CO₂ is detected at the surface.

Updating the monitoring plan

This is one of the most important steps in the life cycle of a CO₂ storage: The adaption/improvement of the static geological earth model (Annex 1.1) with new measurement data is an iterative process. CO₂ can be seen as a tracer for reservoir characterisation and gives additional information about the heterogeneity of the reservoir. Most important is to understand

- the change of geophysical properties of the reservoir and the cap rock over time with ongoing injection,
- the difference between modelled and measured behaviour of the storage complex as signals of leakage might be subtle and fall into the uncertainty of modelled parameters.

Post-closure monitoring

The short post-closure period at the pilot site for CO₂ storage at Ketzin has shown that

- P/T measurements in the wellbores near the reservoir and in aquifers above the reservoirs are most valuable to understand the pressure decrease within the reservoir,
- DTS in the wellbores help to understand the thermodynamic phase behaviour of CO_2 along the sonde,
- Mapping of the CO₂ plume by seismic measurements will provide confidence in the integrity of the reservoir by understanding plume migration.

Table 5: Proven and developed monitoring methods.

Acknowledgment

The scientific content of this poster was aquiered by the GEOTECHNOLOGIEN projects as referred to under "Project". We are especially grateful to our colleagues of Phase 3 projects for their input to the Guidance Document.

