

Reducing CCS Costs: Learning Curves, Learning through Research & Development, and Learning by Doing

Thomas A. Sarkus Division Director, Major Projects Division

May 11, 2015

Cost Share Ensures Commercial Relevance

Carbon Storage Program Technology Readiness Levels (TRLs)

Field deployment and testing of the 5 level 3C array prototype at an industrial well in California

Advanced Coal Power Technologies

Aspects Applicable to Natural Gas

Today's IGCC	Advanced H ₂ Turbines	Integrated Gasification Fuel Cells (IGFC)		
	Syngas Cleanup	Pulse 3100°F H ₂ Combustion Turbine		
	Advanced Pre- combustion Capture	Chemical LoopingTransformationalGasificationH2 Production		
State-of-the-Art	2 nd -Generation	Transformational		
Todav's		Transformational CO ₂ Separation		
Todav's	Advanced Ultra- Supercritical (AUSC) PC			
Today's Supercritical PC	Supercritical (AUSC) PC Advanced Post-combustion	CO ₂ Separation Chemical Looping Direct Power		
Supercritical	Supercritical (AUSC) PC	CO ₂ Separation Chemical Looping Direct Power		

CCRP Technology Development Timeline

Background – Learning Curves

- Developed by T.P. Wright in 1936 after observing labor time reductions to assemble airplanes.
- In 1998 Mackay & Probert showed that a similar rule could be applied to capital cost reductions in renewable energy.
- Models including NEMS rely on this curve to predict future capital costs.

Source: "Learning and Cost Reductions for Generating Technologies in the National Energy Modeling System (NEMS)" E.Gumerman & C.Marnay. Lawrence Berkeley National Laboratory, University of California

Background - Large Variation in Learning Curves for Energy Technology

Technology	Region of Study	Time Period of Study	Estimated Learning Rate	Reference
Coal Power Plants	USA	1960 – 1980	1.0% – 6.4%	Joskow & Rose (1985)
Coal for Electric Utilities	USA	1948 – 1969	25%	Fisher (1974)
Crude Oil at the Well	USA	1869 – 1971	5%	Fisher (1974)
Solar PV Modules	World	1976 – 1992	18%	IEA (2000)
Wind Power	USA	1985 - 1994	32%	IEA (2000)
Wind Power	EU	1980 – 1995	18%	IEA (2000)

Data Source: McDonald & Schrattenholzer, 2001.

Background - Explanations for Variability

- Experience depreciation
- Short-term pricing behavior
- Differences in performance measures
- Definitional differences
- Varying intensities of R&D
- Economies of scale
- Cost variability for factors such as land costs, wages, and interest payments

SO₂ & NO_x Control Learning Curves

Non-linear learning curves are prevalent in power plant emission control technologies.

Yeh, S., Rubin, E.S., Hounshell, D.A., and Taylor, M.R. (2009) Uncertainties in Technology Experience Curves, for Integrated Assessment Models, Environmental Science & Technology, **43** (18), 6907-14.

CO₂ Analogous to US Power SO₂ Emissions

Source: "CCS Theory of Change" by John Thompson, Clean Air Task Force, Nov. 21, 2013; adapted from "Anthropogenic Sulfur Dioxide Emissions: 1850-2005 Supplementary Material" S.J. Smith et. Al.

Background - Key Findings from Literature

- Both Research and Development (R&D) and learningby-doing play an important role in innovation and the cost of energy technologies in the marketplace¹
- Caution should be taken when using this approach due to the following issues:
 - Wide variation in learning curve rates and behavior
 - Cannot separate effects of R&D from learning-by-doing

¹For more details on the models, see Alan McDonald & Leo Schrattenholzer, "Learning Rates for Energy Technologies." Energy Policy, 29 (2001), 255-261; and Sonia Yeh and Edward Rubin, "A Review of Uncertainties in Technology Experience Curves." Energy Economics 34 (3) (2012), 762-771.

Choice of Learning Rate

- Rubin et al (2007), identified historic learning rates from similar power plant technologies:
 - 11% FGD
 - 12% SCR
 - 10% GTCC
 - 5% PC Boilers
- Riahi et al (2004), estimated a 13% learning rate for CCUS technologies.
- Assume a 10% learning rate representing the average of the above learning rates and a 3% error band to reflect inherent uncertainty.

How Many Learning-By-Doing Plants = R&D Goal?

Learning Occurs With R&D, Too

*R&D case includes capital costs but not R&D costs.

Net Present Value Tool

- Question: How many plants would install CCUS if there were a price for CO₂?
- Compared:

Current technology costs EPEC R&D Goals = 50% reduction in CCUS retrofit costs EPEC R&D Goals Lite = 25% reduction in CCUS retrofit costs

 Examined how many plants retrofit with CCUS, how many rebuild with CCUS, and how many continue running business as usual (BAU).

There Can be No Learning-by-Doing if There is No Doing

If R&D is not performed, the cost is too high for most plants to install technology or replace with new CCUS facilities; learning-by-doing never gets off the ground.

What if R&D Only Achieves a 25% CCUS System Cost Reduction?

Even if the NETL R&D program falls short of its goals, there is still value in the form of reduced CCUS system costs, increased deployment, & earlier learning-by-doing.

References

"CCS Theory of Change" by John Thompson, Nov. 21, 2013.

"Climate Change, Technology Innovation, and the Future of Coal" by Edward Rubin, in Cornerstone, Vol. 1, Issue 1, Spring 2013. <u>http://cornerstonemag.net/climate-change-technology-innovation-and-the-future-of-coal/</u>

"Evaluating the Impact of R&D and Learning by Doing on Fossil Energy Cost Reductions: There Can be No Learning if There is No Doing" by Katrina Krulla, DOE/NETL-342/020613, Feb. 2013. http://netl.doe.gov/File%20Library/Research/Energy%20Analysis/Publications/Learning-Curve-Analysis-Report.pdf

"Moore's Law vs. Wright's Law", Forbes, March 25, 2013. http://www.forbes.com/sites/jimhandy/2013/03/25/moores-law-vs-wrights-law/

Statistical Basis for Predicting Technological Progress" by Bela Nagy, et al., Feb. 28, 2013. http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi %2F10.1371%2Fjournal.pone.0052669&representation=PDF

For Additional Information thomas.sarkus@netl.doe.gov

Office of Fossil Energy <u>www.fe.doe.gov</u>

NETL <u>www.netl.doe.gov</u>

