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DOE Research Programs

Cost Share Ensures Commercial Relevance
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Basic Research Applied Research Process & Engineering Demonstration &
Bridges basic research & technology Development Commercialization
development programs Pilot plants, Proof-of concept (POC)

units, Mini-demonstrations

Industry Participation & Cost Sharing Increases, over time



Carbon Storage Program

vailable for
Deployment

The clean room for the manufacturing
of the 3002C Fiber Optic Seismic
Sensors (FOSS)™

Pre-Commercial Commercial-Scale
Pilot-Scale  Demonstration Demonstration
TRL 5-6 TRL7 TRL 8-9

Laboratory/
Bench-Scale

TRL3-4

Analytic Study
TRL1-2

Field deployment and testing of the 5 level 3C array
prototype at an industrial well in California



Advanced Coal Power Technologies

Aspects Applicable to Natural Gas
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Fuel Cells (IGFC)
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Transformational

Advanced Ultra- €O, Separation

Today’s Supercritical (AUSC) PC
Supercritical Chemical Looping Direct Power

PC Advanced Post-combustion Combustion Extraction
gepture Supercritical CO, Cycles
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CCRP Technology Development Timeline
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Background — Learning Curves

Sample Learning Curve Function

Y = axb
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a = Cost of first unit
x = Number of units produced
b = Learning rate exponent

1 - 26 = Learning Rate, reduction in capital
cost for doubling of capacity

* Developed by T.P. Wright in
1936 after observing labor time
reductions to assemble
airplanes.

* In 1998 Mackay & Probert
showed that a similar rule could
be applied to capital cost
reductions in renewable
energy.

* Models including NEMS rely on
this curve to predict future
capital costs.



Background - Large Variation in Learning
Curves for Energy Technology

Region Time Period Estimated

Technology of Study of Study Learning Rate Reference
Coal Power Plants USA 1960 — 1980 1.0% -6.4%  Joskow & Rose (1985)
Coal for Electric USA 1948 — 1969 25% Fisher (1974)
Utilities
Crude Oil at the Well USA 1869 — 1971 5% Fisher (1974)
Solar PV Modules World 1976 — 1992 18% IEA (2000)
Wind Power USA 1985 - 1994 32% IEA (2000)
Wind Power EU 1980 — 1995 18% IEA (2000)

Data Source: McDonald & Schrattenholzer, 2001.



Background - Explanations for Variability

Experience depreciation

Short-term pricing behavior
Differences in performance measures
Definitional differences

Varying intensities of R&D
Economies of scale

Cost variability for factors such as land costs, wages,
and interest payments

ource: Alan McDonald & Leo Schrattenholzer (2000). Learning Rates for Energy Technologies. Energy Policy 29, 255-261.



SO, & NO, Control Learning Curves

Non-linear learning curves are prevalent in power plant
emission control technologies.
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Yeh, S., Rubin, E.S., Hounshell, D.A., and Taylor, M.R. (2009) Uncertainties in Technology Experience Curves, for Integrated
Assessment Models, Environmental Science & Technology, 43 (18), 6907-14.



CO, Analogous to US Power SO, Emissions

*~ 30% reduction
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Source: “CCS Theory of Change” by John Thompson, Clean Air Task Force, Nov. 21, 2013; adapted from “Anthropogenic Sulfur Dioxide
Emissions: 1850-2005 Supplementary Material” S.J. Smith et. Al
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Background - Key Findings from Literature

* Both Research and Development (R&D) and learning-
by-doing play an important role in innovation and the
cost of energy technologies in the marketplace?

e Caution should be taken when using this approach due

to the following issues:
— Wide variation in learning curve rates and behavior
— Cannot separate effects of R&D from learning-by-doing

1For more details on the models, see Alan McDonald & Leo Schrattenholzer, “Learning Rates for Energy Technologies.” Energy
Policy, 29 (2001), 255-261; and Sonia Yeh and Edward Rubin, “A Review of Uncertainties in Technology Experience Curves.”

Energy Economics 34 (3) (2012), 762-771.



Choice of Learning Rate

* Rubin et al (2007), identified historic learning rates from
similar power plant technologies:

— 11% FGD

— 12% SCR

— 10% GTCC

— 5% PC Boilers

e Riahi et al (2004), estimated a 13% learning rate for CCUS
technologies.

 Assume a 10% learning rate representing the average of
the above learning rates and a 3% error band to reflect

inherent uncertainty.



How Many Learning-By-Doing Plants
= R&D Goal?

Reductionsin Cost Based on Learning by Doing
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Learning Occurs With R&D, Too
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After installation on 90 plants, estimated total capital costs are $23 billion*

*R&D case includes capital costs but not R&D costs.



Net Present Value Tool

* Question: How many plants would install CCUS if there
were a price for CO,?

 Compared:
Current technology costs
EPEC R&D Goals = 50% reduction in CCUS retrofit costs
EPEC R&D Goals Lite = 25% reduction in CCUS retrofit costs

 Examined how many plants retrofit with CCUS, how
many rebuild with CCUS, and how many continue
running business as usual (BAU).



There Can be No Learning-by-Doing
if There is No Doing

If R&D is not performed, the cost is too high for most plants to install technology or replace with
new CCUS facilities; learning-by-doing never gets off the ground.
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What if R&D Only Achieves a 25% CCUS
System Cost Reduction?

Even if the NETL R&D program falls short of its goals, there is still value in the form of reduced CCUS
system costs, increased deployment, & earlier learning-by-doing.
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