

Testing and up-scaling of the SER technology. Enhanced Reforming with integrated CO2-capture.

Julien Meyer Institute for Energy Technology, IFE Dep. Environmental Technology Kjeller, Norway

10th CO2GeoNet Open Forum, 11-13. May 2015, Venice, Italy

Institute for Energy Technology

- Independent research foundation established in 1948
- R&D in a broad scope of energy technology
- 600 employees (Kjeller and Halden)
- Turnover: 112 mill. € (2014)
- Internationally oriented
- Contract research in the field of

Sorption-Enhanced Reforming (SER)

- Emerging pre-combustion CO₂-capture technology
 - Reforming and high temperature CO₂ capture
- Stand-alone H₂-production with CO₂-capture
 - Industrial use
 - Transport sector
- Power production
 - H₂-production with CO₂-capture and steam boiler
 - Steam turbine cycle
 - H₂-production with CO₂-capture and CC power plant
 - Combined gas and steam turbine cycle
 - H₂-production with CO₂-capture and SOFC
 - ZEG concept Potential for high efficiency (www.zegpower.com)

Sorption-Enhanced Reforming (SER)

 Potential for lower production costs and energy savings

IF2

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

Hydrogen production in one single step

SER technology development at IFE

fluidized bed reactor system (DBFB)

SER reactor configurations

SER reactor technology developed at IFE Dual Bubbling Fluidized Bed (DBFB) reactor system

- Dual bubbling fluidized bed reactor (DBFB)
 - 2 FB-reactors coupled with loop- seals and riser
 - Continuous mode
 - Bubbling regime
 - Circulation rate adjusted with slide valve
 - High temperature tube
 HEX in the regenerator

DBFB SER reactor model developed at IFE

NTNU – Trondheim Norwegian University of Science and Technology

DBFB SER reactor prototype

- H₂ production capacity
 - 13 Nm³/h
- Reformer
 - 600°C; 0.5 barg max.
 - 0.3 m/s; S/C ratio: 4
 - Upgraded desulfurized biogas (97% CH₄)
- Regenerator
 - 850°C; 0.5 barg max.
 - 0.1 m/s
 - Steam + 2 vol% hydrogen
- Solids
 - CO₂ sorbent: Calcined dolomite
 - 200µm
 - Commercial reforming catalyst
 - 150µm
 - Ratio sorbent/catalyst: 2.5 3 w/w
 - Solids inventory: ca. 170 kg
 - Solids circulation rate: 75 kg/h

DBFB SER prototype

DBFB SER prototype

The regenerator HT heat exchanger

- 35 one-piece vertical U-tubes, ¹/₂"
- Inconel 601
- Tubes welded at both ends

The regenerator HT heat exchanger CFD analysis- Temperature profile and gas distribution

The regenerator HT heat exchanger Heat exchange calculations and CFD analysis

	Unit	Value
Minimum required power to regenerator	kW	12.3
Gas/particle bed temperature	°C	850
Convective heat transfer coefficient, tube-bed	W/m ² .K	564
Adjusted outer tube temperature	°C	854.6
Radiative heat transfer coefficient, tube-bed	W/m ² .K	278
Overall heat transfer coefficient, tube-bed	W/m ² .K	842
Outer tube diameter	mm	21.34
Total number of tubes	-	35
Total HEX area	m ²	3.137

Surface – bed heat transfer

- Morelus et. al (1995) correlation considering <u>combined</u> gaseous and particle convection
- Radiative heat transfer taken into account

- 30 kW_{LHV} fired in
- 1050 °C in the tubes
- 5 °C ∆T between outer tubes surface and solids

Batch mode reforming test 600°C; S/C = 4; Sorbent/Catalyst = 2.8; 0.3 m/s

Reforming and CO₂ capture performances confirmed

Batch mode regeneration test

- Pre-heating of reactors to operating temperature
- Quick addition of a known quantity of solids (CO₂ loaded)
- 31.3 kW_{LHV} fired in
- Measurement of required time to heatup & regenerate

N ₂ fluidization feed flow	180	NL/min
Fuel flow to burner	54	NL/min
Air flow to burner	3178	NL/min
Solids inlet temperature	20	٥C
Feed gas temperature	595	°C
Average initial & final bed temperature	874	°C
Elapsed time	480	S
CO ₂ loading in sorbent	13	g CO ₂ /100g sorbent
Mass solids introduced	3.74	kg (sorbent + catalyst)

Batch mode regeneration test

- 11.4 kW transferred compared to 12.3 kW required
- Around 24% heat loss due to scale and not perfect insulation

Attrition tests

100 hours tests in both <u>batch</u> reforming and regeneration conditions

	Cut	d _{pi}									
			Partially carbonated dolomite + catalyst		After re	forming	attrition test		regener trition te		
μm	μm	μm	g	fi	f _i /d _{pi}	g	fi	f _i /d _{pi}	g	fi	f _i /d _{pi}
200	250	225	19.50	0.215	Q .00096	4.30	0.053	0.00024	4.50	0.051	Q.00023
150	200	175	55.50	0.612	0,00350	58.10	0.718) 0.00410	64.20	0.730	000417
100	150	125	12.80	0.141	0.00113	16.40	0.203	0.00162	17.60	0.200	0.00160
75	100	87.5	2.10	0.023	0.00026	1.80	0.022	0.00025	1.50	0.017	0,00020
0	75	37.5	0.80	0.009	0.00024	0.30	0.004	0.00010	0.10	0.001	0.00003
			90.70	1.000	0.00608	80.90	1.000	0.00631	87.90	1.000	0.00623

Partially carbonated dolomite + catalyst	After reforming attrition test	After regeneration attrition test
μm	μm	μm
164	158	161

- Some particle fragmentation observed, little abrasion
- Few fines quantities produced

Results of batch mode DBFB tests

- Reforming and CO₂ capture performances confirmed and validated
- Actual heat transfer quantified
- Required heat transfer almost achieved, (due mainly to heat losses)
- Solids mechanical performances are satisfactory

Coming tests

- Test and optimization of the solids loop for
 - Maximum H₂ yield
 - Maximum CO₂ capture rate
- Gather experimental particle attrition data for <u>continuous</u> operation
- Improve and validate models

Up-scaling work

- Based on the present models, experimental results and past experience:
 - a 700 kW_{th H2} SER reactor system has been designed for an integration with an SOFC in a ZEG concept
 - the data will be used in a pre-engineering study for cost calculation
- Further research work is also carried out to develop high performance combined sorbentcatalyst materials with higher sorption capacity and better mechanical properties to reduced CAPEX and OPEX (http://www.ascentproject.eu/)

DBFB SER prototype integrated with SOFC module

50 kW ZEG pilot plant

Commissioning started

CMC Prototech IF? ZEG Power

ZEG concept: Integration of SER and SOFC

Techno-economical study of the ZEG-concept (2010) Stand-alone power production case, 400 MW_{el}

- Efficiency close to 77% with 100% CO₂ capture and no NOx emissions can be obtained
- Shows profitability for an electric power price of 50 €/MWh or higher, even with no income for the CO₂ captured and a quite moderate natural gas price of 19 €/MWh

		Price scenario			
		1	2	3	
NG cost	€/MWh	13	19	26	
El. power cost	€/MWh	38	56	76	
CO ₂ quota cost	€/tonne	17	19	21	
CO ₂ sales value	€/tonne	0	10	21	

	El. power co	ost (€/MWh)	CO ₂ sales value (€/tonne)		
	48	74	38	83	
NPV (M€)					
ZEG-case	0	776.0	0	368.1	
REF-case	-748.3	0	-560.5	0	

NPV-values calculated for price scenario 1 and a NG-cost of 19 €/MWh

CMC Prototech IF2 ZEG Power =

REF-case: IRCC power plant (ATR, WGS, MDEA, CC)

NPV-results for price scenario 1, 2 and 3 based on 8 000 operating hours/year, 25 years operation and 7.5% interest rate. An SOFC replacement interval of 80 000 hours is assumed. Destruction cost

of solid residues, cooling water cost and fixed costs (maintenance, staff, administration) included.

Thank you for your attention !

julien.meyer@ife.no www.ife.no

