

RESULTS OF THE CO₂ CAPTURE DEMONSTRATION FACILITY AT EDF'S LE HAVRE POWER PLANT

Dr. François GIGER, Fabrice CHOPIN EDF SA France

10th CO₂ GeoNet Open Forum Capture Workshop Venice, 13th May 2015

OUTLINE OF THE PRESENTATION

- 1. Strategic approach
- 2. Le Havre CCS Pilot
- 3. Main Results and Lessons Learned
- 4. Conclusions

1. Strategic Approach

- Reducing Carbon Use Step by Step
- Specific Needs by Country
- CCS Energy Penalty Reduction

REDUCING CARBON USE STEP BY STEP

- Promote Demand Side Management on the customers' side and
- Reduce carbon use intensity in generation:
 - □ 1st step: reduce share of carbon based generation in energy mix
 - **2**nd step: maximize energy output per quantity of carbon used
 - □ 3rd step: enhance energy efficiency.
- Then next steps; towards CCS:
 - **Prove, develop and apply post-combustion technologies**
 - Develop oxycombustion
 - □ Watch on other technologies in order to prepare the future
- ➢ In parallel contribute to develop CO₂ transport and storage

SPECIFIC NEEDS BY COUNTRY

STRUCTURE OF GENERATION MIX FOR EACH COUNTRY

Share of generation (2011, %) Carbon intensity

	Hydro	O. Renew	Nuclear	Fossil	g CO ₂ / kWh
Poland	2,0	6,1	0,0	91,9	912
• UK	1,7	7,7	18,1	72,4	450
 Germany 	3,9	18,5	17,7	59 ,8	464
Italy	16,2	12,7	0,0	71,1	405
France	9,4	3,6	77,5	9,5	50
• EDF	7,0	0,8	89,5	2,7	25

Sources : EURELECTRIC, EDF.

STRATEGIC APPROACH

CCS ENERGY PENALTY REDUCTION

> 10 to 15 efficiency points loss for CO_2 capture not sustainable:

□ would lead to a 20 to 30 % increase in coal consumption

> Doubling the investment cost per MW not economically sustainable:

would jeopardize competitivity

> Therefore:

Energy Penalty Reduction and Investment Overcosts Reduction are our main priorities for post-combustion CO₂ capture

... after proving the faisability of the technical routes ...

... in order to keep some competitivity ...

2. Le Havre CCS Pilot

- The Capture Pilot Plant Project at EDF'S Le Havre
- Le Havre Power Plant
- Features of Le Havre Capture Pilot Plant (1/2)
- Features of Le Havre Capture Pilot Plant (2/2)
- AAP @ Le Havre: Main Objectives

EXAMPLE 6 EXAMPLE 6 EXAMPLE 6 EXAMPLE 6 CCS PILOT THE CAPTURE PILOT PLANT PROJECT AT EDF'S LE HAVRE

photos © EDF 2013

EDF Le Havre coal power plant (field pilot represented in orange)

- Designed to capture 25 t CO₂/day at 90% CO₂ capture, (CO₂ ~ 12 vol%)
- Flue gas: slipstream from 580 MWe coal unit (EDF host facility)
- > 22 M€ budget (construction & operation, all included)
- 25% public funding by ADEME (French Environment and Energy Management Agency)

- Project schedule :
 - · Overall 2010 2014 project
 - 1st tonne captured on 8 July 2013
 - Testing from October 2013 until March 2014 (down from 1 year originally programmed)

© Alstom 2013

CE HAVRE CCS PILOT

- Located in the biggest French harbour, at the mouth of the Seine River
- 1 coal unit still in operation
 - > Unit 1, coal, 250 MWe-net [1968 2013]
 - > Unit 2, coal, 585 MWe-net [1969 2014]
 - > Unit 3, heavy fuel oil, 585 MWe-net [1973 1995]
 - > Unit 4, coal, 580 MWe-net [1983 ->2035]
 - Major renovation works currently on-going to extent operation until 2035

Le Havre unit 4

- Lowest marginal costs of the French fossil plants
- > Burns international coals
- > Equipped w/ full AQCS (SCR, ESP, wet-FGD)

Typical operation is

- > 5,000 5,500 h a year
- > High level of grid services
 - > i.e. operates daily between 50% and full load Location of Le Havre on a map of north-west France

© EDF 2013 – Didier Marc – bird's eye view: Normandy bridge and Le Havre and its Power Plant

LE HAVRE CCS PILOT

FEATURES OF LE HAVRE CAPTURE PILOT PLANT (1/2)

Simplified Process Schematic of the Advanced Amine Process (AAP)

Advanced Flow Scheme
 (= latest generation of AAP scheme) is implemented at Le Havre

- Improved absorber design
- Advanced regeneration concept
- High efficiency heat exchanger network
- Additionally: O₂ stripper

LE HAVRE CCS PILOT

FEATURES OF LE HAVRE CAPTURE PILOT PLANT (2/2)

Parameter	Value		
Inlet flue Gas Flow Rate	2500 – 5000 Nm ³ /hr		
Inlet flue Gas Flow Temperature	36 – 45°C		
Inlet flue Gas SOx Content	$< 220 \text{ mg/Nm3} @6\% O_2$		
Amine Solvent Flow Rate	12 – 25 metric tonnes/hr		
CO ₂ Removal Efficiency Target	90%		
CO ₂ production Rate	25 metrics tonnes/day		

Parameter	Value
Flue Gas Conditioning Column	11.8 m x 110 cm ID
Flue Gas Conditioner, DeSOx Rating	> 91% SO ₂ removal
Absorber, Lower Section Column	20.7 m x 120 cm ID
Absorber, Upper Section + Water Wash Column	24.3 m x 110 cm ID
Amine Regeneration Column	26.0 m x 60 cm ID

photo ©EDF 2012, all rights reserved

LE HAVRE CCS PILOT

AAP @ LE HAVRE: MAIN OBJECTIVES

<u>Test Programme Aim</u>

- Evaluate key process issues:
 - CO₂ capture efficiency & thermal performance
 - Solvent management
- Environmental study
 - Emissions to atmosphere
 - Liquid waste
- Oxygen stripping impact on solvent degradation & performance
- Corrosion resistance of steel and non-metallic materials
- Reliable operation during transient modes, i.e. load variations, start-ups & shut-downs

More Interests of the Power Producer

- Aware buyer of the technology
- Develop O&M skills and knowledge
- Arise awareness on capture part of CCS

photo ©EDF 2012, all rights reserved

3. Main Results and Lessons Learned

- 1,900 Tonnes of CO₂ Captured
- Energy Performance
- Solvent Management
- Emissions

MAIN RESULTS AND LESSONS LEARNED

1,900 TONNES OF CO₂ CAPTURED

ENERGY PERFORMANCE

- A thermal performance of 2.3 2.4 GJ/t CO₂ at 90% capture rate was demonstrated consistently
 - These values were obtained in slightly different process conditions than the design case (namely Liquid/Gas ratio)
 - Results indicate that there is a potential for further slight energy improvement with minor modifications to the existing equipment

ALSTOM Advanced Flow Scheme has significantly lower energy demand than Conventional Flow Scheme

Adapted from Alstom

SOLVENT MANAGEMENT

- No additives were added (save a small quantity of anti-foam UCARSOL[™] GT10)
- Max. reboiler outlet solvent T° kept slightly below 130°C for most of the campaign
- Within these conditions, UCARSOLTM FCG 3000 shows good stability behaviour
 - An amine loss around 0.23 0.3 kg/tonne of CO₂ was reported (emission + degradation): the degradation rate and rate of by-product build-up is comparable to published pilot plant degradation studies on MEA.

EMISSIONS

- Amines emissions were low (a few ppm_v).
 - Consistent w/ Charleston Pilot Plant results (below 2 ppm_v)
 - In line w/ what is expected given the volatility of the solvent
- However, somewhat higher amines emissions were randomly, but regularly, observed with peaks infrequently higher than 50 ppm_v
 - Could be linked to aerosol emission
- Amines and ammonia emissions sampled and reported throughout the test period

- Relationship with the authorities:
 - Transparency and responsiveness are crucial;
 Meetings were organized regularly and monthly reports were issued.
 - We were able to answer satisfactorily to the administration concerns.
- Capture process operation:
 - Operators' learning curve needs to be considered in test planing
 - The plant was designed for a multitude of operating conditions, posing challenges to operators and equipment
- > Data quality and instrumentation verification:
 - Processes this size are build as any 'industrial plant' (but more instrumented). Plant instrumentation measurement chains must undergo a specific qualification to ensure the desired level of accuracy for R&D purposes. It is time- and manpower-consuming
 - Specific effort was dedicated to detailed liquid solvent and emission analysis due to (i) the stakes and (ii) the necessary skills and procedures to reach proper results:
 - Emissions sampling were thoroughly prepared
 - Solvent/emission sampling & analysing requires know-how (ensured by DOW, EPRI, SINTEF and other labs)
 - FTIR continuous measurement is an added value

4. Conclusions

allen te All

• Wrap-up

• EDF's Vision

CONCLUSIONS

WRAP-UP

- ALSTOM's AAP Advanced Flow Scheme, was implemented and successfully demonstrated at EDF's Le Havre, also thanks to ADEME's funding.
- 1,900 metric tonnes of CO₂ were captured between July 2013 and March 2014 at EDF's demonstration facility (designed to capture 25 tonnes/day).
- Many tests data is still to be reviewed, but preliminary results are:
 - Thermal performance of 2.3-2.4 GJ/t CO₂ at 90% capture rate consistently demonstrated.
 - Good thermal and chemical stability of the solvent,
 - Consistently low ammonia emissions (< 2 ppm_v)
 - Low gaseous amine emissions (a few ppm_v), but a few emissions peaks.
- In terms of operation:
 - On-site workforce sized to operate 24/7 (to maximize the amount of tests during time available)
 - Measurements and data quality was a continuous improvement process.
 - We were able to answer satisfactorily to the French administration questions and concerns.

CONCLUSIONS

EDF'S VISION

- Climate change identified within EDF as a major issue since 1990, with significant results achieved so far;
- EDF's Energy mix significantly de-carbonized
 (25 g CO₂ / kWh in France, 120 g CO₂ / kWh worldwide in 2011),
- \succ CCS acknowledged as one of the potential technologies to curb further CO₂ emissions,
- Capture side:
 - valuable experience gained at Le Havre, but developments still needed,
 - need for proving the technologies at industrial scale,
 - reducing costs & energy penalty, while
 - keeping enough manoeuvrability.
- Transport & storage side:
 - present technical bottlenecks in Europe?
 - urgent need for gaining public support and acceptance.

