

Assessment of Storage Injection

Gillian Pickup, Min Jin and Eric Mackay Heriot-Watt University

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

Slide 1

Outline

- Introduction
 - Issues
- Case Studies
 - Bunter dome
 - Channel sands
 - Captain aquifer
- Conclusions

Issues to Consider

- Want to ensure safe storage, avoid
 - high pressure build-up
 - migration of CO₂ out of the storage complex
- We need to have good injectivity
 - injection rate/unit rise in pressure
 - m3/day/Mpa
 - need high permeability

Issues to Consider

- But, uncertainty about aquifer structure and properties
 - require modelling and simulation
 - cover a range of possibilities
- Knowledge gained from modelling
 - plans for initial injection strategy
 - ID targets for data gathering

Bunter Dome Study

Energy Technologies Institute UK Storage Appraisal Project (ETI UK SAP) In collaboration with BGS, Keyworth

Bunter Model

• Bunter Formation, S. North Sea

Issues in Bunter study

Uncertainties

T INSTITUTE OF

- extent of the aquifer

PETROLEUMENGINEERING

- continuity of a low-perm cemented layer
- level of heterogeneity
- will CO₂ migrate out of the dome?
- Injection strategy
 - location of wells
 - distance from crest
 - injection rate

Simulations Performed

• Focused on Dome A

ETROLEUMENGINEERING

- 10 wells , controlled initially by rate (2 Mt/yr/well)
- constrained by maximum pressure limit at well
- and maximum pressure rise at crest of dome
- also constrained by migration across spill point

Results

- Examined of dome storage efficiency, E_d
 volume of CO₂ stored in dome/volume of dome
- Base-case, $E_d \sim 19\%$
 - lower value for limited extent of the aquifer
 - higher value for
 - open aquifer
 - model with no cemented layer
 - homogeneous model

Example Results

a) Cemented layer
 – CO₂ migrates underneath

b) No cemented layer

- CO₂ rises due to buoyancy

Discussion

- If injection rate is high
 - pressure will build-up and well may shut in
 - or, CO₂ may migrate through the spill point
- If injection rate is low
 - allows for buoyant rise and higher storage capacity
- If injection wells are placed far from crest
 - risk of migration across spill point
 - but, could be risk of fracturing at crest

Channelised Formations

Funded by The Crown Estate in collaboration with Durham University

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

Slide 12

Channel Sand Formations

Two types of formation

PETROLEUMENGINEERING

- Turbidites
- Fluvial

HERIOT WATT INSTITUTE OF

Both characterised by channel sands in a low-perm background

Issues in Channel Sands

Connectivity of the channels

PETROLEUMENGINEERING

- good connectivity could lead to long-range migration
- Volume of sandstone connected to the injector
 - injection into isolated channels will cause pressure build-up
 - risk of fracturing

Forties Aquifer

- Model of Forties Formation (Aquifer)
 - model created for ETI UK SAP project
 - turbidite depositional system

From Goater et al, 2013

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

Slide 15

Turbidite Model Properties

Sand:shale ratio: 80:20

ETROLEUMENGINEERING

WATT INSTITUTE OF

- Average channel width: 500 m
- Average channel thickness: 8 m

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

Sand

Fluvial Models

sand:shale 65:35 sand

sand:shale 80:20

Example of Poro-Perm Properties

• Porosity

HERIOT WATT INSTITUTE OF

PETROLEUMENGINEERING

Permeability

Model Properties

- Total model size: 13 km x 12.6 km x 170 m
- Average sandstone permeability
 3 cases: 10 mD, 100 mD, and 1000 mD
- Average sandstone porosity
 0.2 for all cases
- Properties of the shale
 - Perm = 10⁻⁵ mD
 - Poro = 0.1

Numerical Simulations

- CO₂ injected through 4 wells in centre of model – perforated through whole thickness
- Injection rate: 0.5 Mt/yr/well
 max pressure = 400 bar (40 Mpa)
- Total injection time: 20 years

PETROLEUMENGINEERING

Pressure Buildup

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

ETROLEUMENGINEERING

Slide 21

Pressure Profiles

• The coarse grid does not resolve the pressure increase

Discussion on Channel Models

Impact of heterogeneity is significant

ETROLEUMENGINEERIN

- If fine-scale detail is omitted near a well
 - build-up in pressure may be underestimated
 - injectivity may be overestimated
- In models with low sand permeability, injectivity depends on sand:shale ratio
- In models with higher sand permeability, injectivity also depends on facies type (fluvial/turbidite)

Captain Aquifer

"Progressing Scotland's CO₂ Storage Opportunities" Government and Joint Industry Project In collaboration with BGS, Edinburgh

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

Slide 24

Captain Sandstone Aquifer

PETROLEUMENGINEERING

Geological Model

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

PETROLEUMENGINEERING

Injection Well Locations

(1) 01/Jan/2015 (00:00:08) DEPTH Grid3 (CAPTAIN-3F_E300)

PETROLEUMENGINEERING

Factors Affecting CO₂ Storage

- a) If aquifer is "closed"
 - pressure build-up
 - CO₂ capacity limited by maximum pressure
- b) If aquifer "open"
 - CO₂ may migrate out of storage formation
 - Could migrate towards oil reservoirs
- c) Transmissibility of faults
 - impermeable faults limit migration of CO₂
 - but increase local pressure build-up

Jin et al, 2012, SPE 154539

Results

- Large range of storage capacity
- However, some cases are extreme

Other Factors

- There are several hydrocarbon reservoirs in the Captain Formation
 - must not inject within ~ 10 km of these
- Pressure build-up may be mitigated by producing formation water

Conclusions

Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS

Slide 31

Conclusions

- Although there are different structures in these models, there are similar problems
- Extent of aquifer
 - the pressure rise depends on the total size of the aquifer, often uncertain
- Size of connected pore volume
 - impermeable barriers will increase pressure build-up
 - impermeable layers or faults
 - inter-channel shales

Conclusions

- Possible migration out of storage complex
 - due to heterogeneity, migration pattern is irregular
 - may get migration under horizontal barriers
 - or migration into shallow part of aquifer where CO₂ is sub-critical
 - or migration towards a hydrocarbon reservoir
- However, CO₂ migration is limited by
 - dissolution
 - residual trapping

Additional Factors

- Near-well issues
 - salt deposition
 - could block pores and reduce permeability
 - thermal cooling due to Joule-Thompson effect
 - could adversely affect well equipment

Trilemma

Maximise Storage

Acknowledgements

- We thank Schlumberger for providing software (Petrel and Eclipse)
- We acknowledge co-workers from BGS and University of Durham
- This work was funded by several companies, including

 ETI, TCE
- Eric Mackay is funded by Foundation CMG

