
U.S. CCS Policy, Regional Carbon Sequestration Partnerships, and Major Demonstration Projects

Thomas A. Sarkus

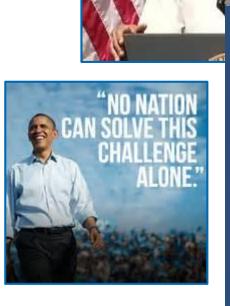
Division Director
Major Projects Division
May 11, 2015

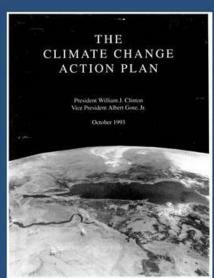
President's Climate Action Plan

EPA draft rules
 111 (b) and 111 (d)

President's Climate Action Plan: Three overarching themes

Mitigation (Emissions Reduction)


- ALL OF THE ABOVE
- Efficiency, Renewables, Nuclear, Gas
- Coal with CCS/CCUS


Adaptation & Resilience

- Smart, reliable grid
- Key infrastructure investments

International Partnerships

- China and Asia
- Coordinated Int'l Efforts

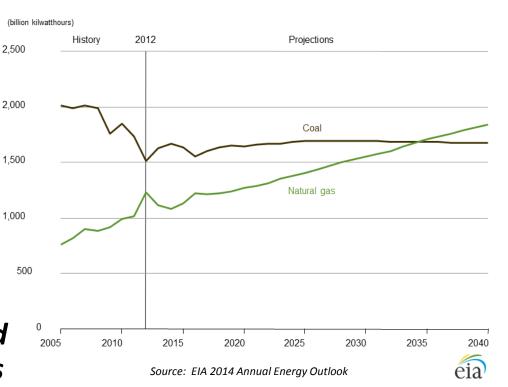


Electric Utility Sector & EPA Regulations

	Issue	Federal Regulation/Compliance				
Air	SO _x & NO _x crossing state lines	Cross-State Air Pollution Rule (CSAPR) Finalized 7.7.2011; 12.30.2011, DC Circuit stay of CSAPR (CAIR in effect); 8.21.2012, DC Circuit decision vacating CSAPR; SCOTUS overturned, EPA Review Pending Compliance: Unknown				
	Mercury and Hazardous Air Pollutants (HAPs)	Mercury and Air Toxics Standards (MATS) Rule for Electric Generation Units Finalized 12.16.2011 – Pending SCOTUS Review Compliance: ~2015				
	GHG emissions	GHG New Source Performance Standards (NSPS) New rule proposed 9.20.2013; Final rule expected Mid-summer 2015 Existing Source GHG Regulation Proposed rule delivered 6.2014 Final rule expected Mid-summer 2015				
Waste	Coal Combustion Residuals (e.g., coal ash, boiler slag)	Coal Combustion Residuals (CCR) Rule Proposed rule 6.10.2010; Final rule issued 12.19.2014 Compliance: Rolling Basis				
Water	Cooling Water Intake Structures – impact on aquatic life	CWA §316(b) Rule Final rule delivered 5.2014 (settlement agreement) Compliance: Within 8 Years				
	Surface water discharges; Surface impoundments	Steam Electric Effluent Limitations Guidelines Proposed rule 11.2012; final rule expected 9.2015 (settlement agreement) Compliance: Unknown				

- Near-term (through 2015-2016)
 Compliance Horizon for EPA regulations may create potential localized reliability issues
- Local reliability issues can be managed with timely notice and coordination on retirement and retrofit decisions
- States and regions will play a valuable role in addressing EPA regulation impacts
- Non-transmission alternatives can help alleviate reliability impacts when/where available
- EPA regulations are only one aspect impacting the future of our electricity system

Underground Injection Control (UIC) Well Classes


Future of Fossil Energy Demand & Generation

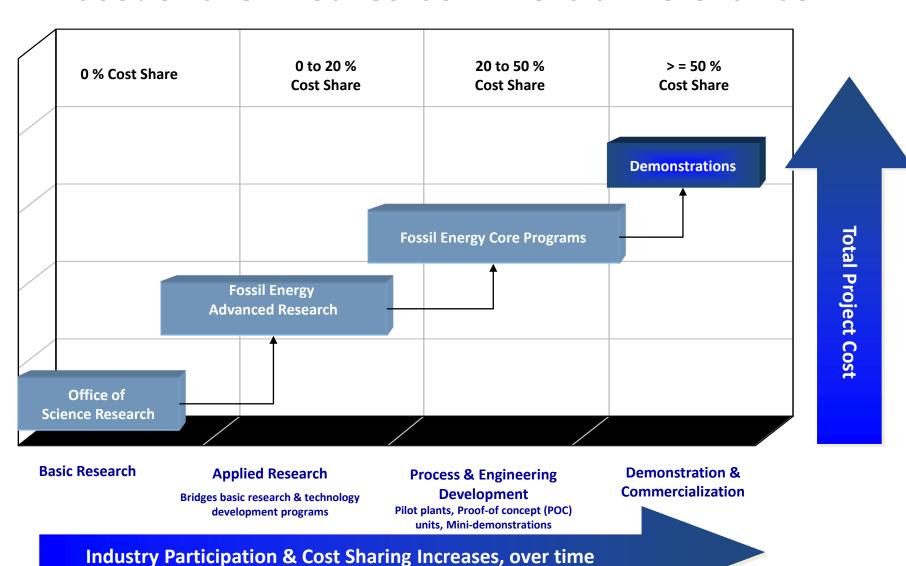
•Even with robust natural gas growth, coal is still a major source of global energy demand and domestic electricity generation

 Fossil Energy remains dominant share (68%) of United States electricity generation in 2040

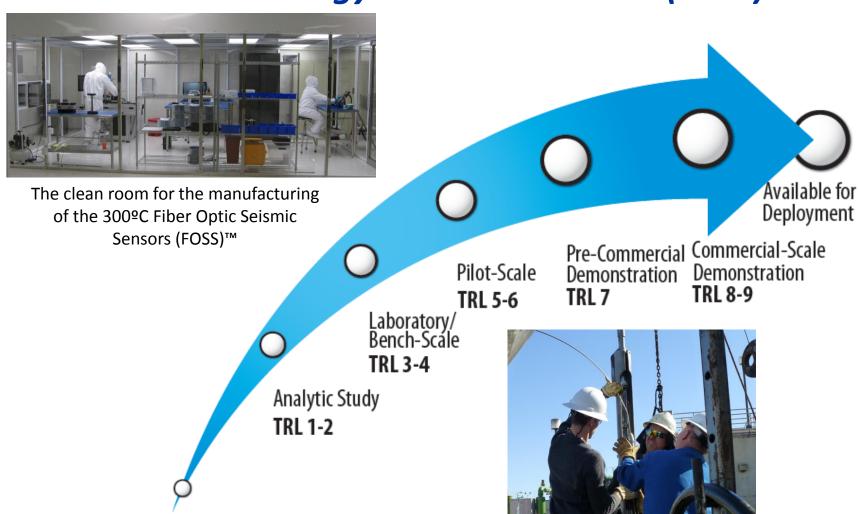
 With this continued use and growth is a need to address CO₂ emissions

Figure 3. Electricity generation from natural gas and coal, 2005-2040

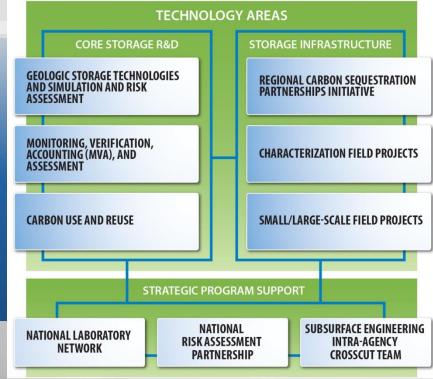
Carbon Sequestration Leadership Forum (CSLF)


The CSLF aims to:

- Share information on CCS projects, policy initiatives and legal and regulatory developments in member countries
- Build the capacity for CCS in the developing country CSLF members
- Explore methods for financing CCS projects, including in developing countries
- Develop global roadmaps for research, development and demonstration of CCS technologies

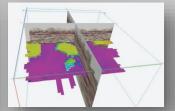


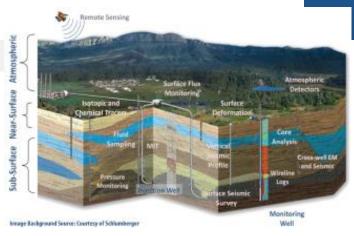
Cost Share Ensures Commercial Relevance

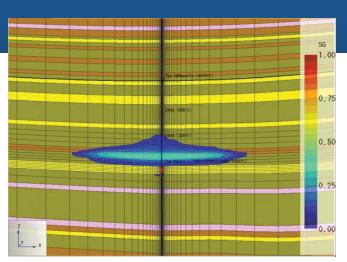

Carbon Storage Program Technology Readiness Levels (TRLs)

Field deployment and testing of the 5 level 3C array prototype at an industrial well in California

Carbon Storage R&D Program Current Program Goals

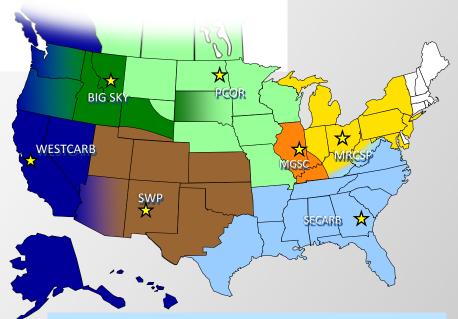

- Develop & validate technologies to ensure 99% storage permanence.
- Support industry's ability to predict CO₂ storage capacity in geologic formations to within ± 30%.
- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Develop Best Practice Manuals.



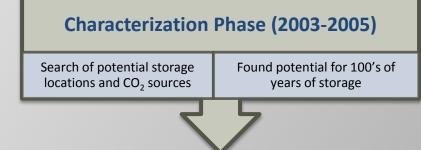

Carbon Storage R&D Program

Technical Priorities to "Master the Subsurface"

- Predicting & monitoring CO₂ plume & brine pressure front movement, stabilization & impacts
- Optimization of reservoirs for CO₂ storage capacity
- Developing & validating risk assessment strategies
- Mitigating risks such as the risk of leakage from old wells & induced seismicity
- Carrying out (large-volume & fit-for-purpose) field tests for different storage types & depositional environments



Storage Infrastructure


Regional Carbon Sequestration Partnerships

Seven Regional Partnerships

400+ distinct organizations, 43 states, 4 Canadian Provinces

- Engage regional, state, and local governments
- Determine regional sequestration benefits
- Baseline region for sources and sinks
- Establish monitoring & verification protocols
- Address regulatory, environmental & outreach issues
- Validate sequestration technology & infrastructure

Validation Phase (2005-2013)

19 injection tests in saline formations, depleted oil, unmineable coal seams, and basalt

Development Phase (2008-2018+)

8 large scale injections (over 1 million tons each)

Commercial scale understanding

Regulatory, liability, ownership issues

Regional Carbon Sequestration Partnerships

DOE Field Activities in different reservoir classes

- Depositional environment impacts storage efficiency and capacity as well as MVA
- DOE is studying the potential for CO₂ storage in 11 reservoir classes representing different depositional environments

Geologic Storage Formation Classification: Reservoir Class		Deltaic	Shelf Clastic	Strandplain	Lacustrine	Eolian	Fluvial and Alluvial	Turbidite	Shelf Carbonate	Reef	Coal/Shale	Basalt (large igneous provinces)
Large-Scale Field Projects ²	Saline						3		1			
	EOR			1			24			1		
Small-Scale Field Projects ³	Saline	1	1	1					2			1
	EOR	2	2				1		3	2	7	

NOTES:

- (1) The number in the cell is the number of investigations by NETL per geologic storage formation classification.
- (2) Large-scale field projects: injection of more than 1,000,000 metric tons of CO2.
- (3) Small-scale field projects: injection of less than 500,000 metric tons of CO₂ for EOR and 100,000 metric tons for saline formations. Site characterization: characterize the subsurface at a location with the potential to inject at least 30,000,000 metric tons of CO₂.
- (4) One large-scale project involves both EOR and saline storage.

Regional Carbon Sequestration Partnerships

RCSP Development Phase CO₂ Injection Volumes

Big Sky Carbon Sequestration Partnership

Kevin Dome Project

Injection 2016

Plains CO₂ Reduction Partnership

Bell Creek Field Project

1,660,570 metric tons

Southwest Regional Carbon Sequestration Partnership

Farnsworth Unit – Ochiltree Project

259,739 metric tons

Plains CO₂ Reduction Partnership

Fort Nelson Project

Injection TBD

Midwest Regional Carbon Sequestration Partnership

Michigan Basin Project

346,243 metric tons

Midwest Geological Sequestration Consortium

Illinois Basin Decatur Project

999,215 metric tons

Southeast Regional Carbon Sequestration Partnership

BIG SKY CARBON

Cranfield Project

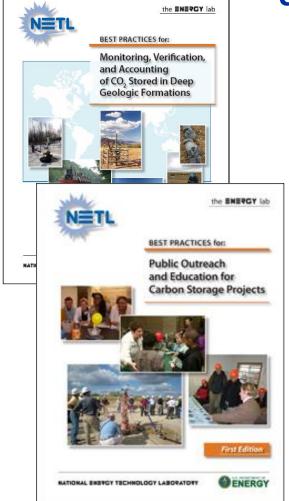
4,743,898 metric tons

Southeast Regional Carbon Sequestration Partnership

Citronelle Project

114,104 metric tons

Regional Carbon Sequestration Partnerships


Large-Scale Geologic Tests/Key industry Partners

RCSP	Performer	Key Industry Partners	Injection Location	Reservoir/Geologic Province	CO₂ Source	Status
Big Sky	Montana State U.	Vector Oil & Gas LtdSchlumbergerBison Eng.	Kevin, MN	Saline/Kevin Dome – Duperow Formation	Naturally occurring CO ₂ produced from Kevin Dome	Drilling of first well to start September 2016.
MGSC	Illinois State Geologic Service	Archer DanielsMidland Co.Schlumberger	Decatur, IL	Saline/Illinois Basin – Mt. Simon Sandstone	ADM ethanol fermentation facility	CO ₂ injection started Nov. 15, 2011; 999,215 metric tons injected to date.
MRCSP	Battelle Memorial Institute	- Core Energy, LLC	Otsego County, MI	EOR/Michigan Basin – Niagaran Reef	Core Energy Natural Gas Processing Plant	CO ₂ injection started Feb. 2013; 346,243 metric tons injected to date.
PCOR	UNDEERC	Denbury Resources,Inc.Ramgen PowerSystems	Bell Creek, MN	EOR/Powder River Basin – Muddy Sandstone	ConocoPhilips Lost Cabin Natural Gas Processing Facility, WY	CO ₂ injection started May 2013; 1,660,570 metric tons injected to date
PCOR	UNDEERC	Spectra EnergyRPS Group. PlcAlberta Innovates	Fort Nelson, BC	Saline/Horn River Basin - Carbonates	Spectra Energy's Fort Nelson Gas – Processing Facility	Reservoir data being collected.
SECARB	SSEB	Denbury Onshore LLCSchlumbergerBEG, U. of TexasSandia Technologies	Cranfield, MS	Saline/Gulf Coast – Tuscaloosa Formation	Naturally occurring CO ₂ produced from Jackson Dome	4.7 million metric tons injected to date
SECARB	SSEB	EPRIDenbury Onshore LLCAlabama PowerSouthern Co.	Citronelle, AL	Saline/Gulf Coast – Paluxy Formation	Southern Company's Plant Barry Power Station	CO ₂ injection started August 20, 2012; 114,104 metric tons injected to date.
SWP	New Mexico Institute of Mining & Technology	- Chaparral Energy LLC - Schlumberger - ARI	Farnsworth, TX	EOR/Anadarko Basin – Morrow Sandstone	Fertilizer Plant - Borger, TX and Ethanol Plant – Liberal, KS	Monitoring of injected CO₂ in the west Farnsworth Unit 259,739 metric tons injected to date.

Carbon Storage Best Practices Manuals

Critical Requirement for Significant Wide-Scale Deployment:

Capturing Lessons Learned

Best Practices Manual	Version 1 (Phase II)	Version 2 (Phase III)	Final Guidelines (Post Injection)	
Monitoring, Verification and Accounting	2009/ 2012 2016		2020	
Public Outreach and Education	2009	2016	2020	
Site Characterization	2010	2016	2020	
Geologic Storage Formation Classification	2010	2016	2020	
**Simulation and Risk Assessment	2010	2016	2020	
**Carbon Storage Systems and Well Management	2011	2016	2020	
Terrestrial	2010	2016 – Post MVA Phase III		

^{**}Regulatory Issues are addressed within various Manuals

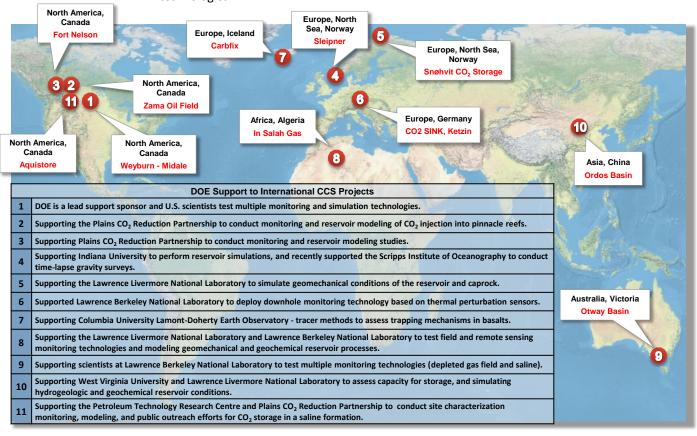
Strategic Program Support

Global Collaborations Leveraging International R&D

International Demonstrations

Sponsor multi-national R&D internally through the National Laboratory Network

Carbon Sequestration Leadership Forum


International ministerial-level organization focused on improved CCS technologies

Bilateral Agreements (Specific Countries)

DOE has MOUs with UK, Canada, Norway and China

Other Research Activities

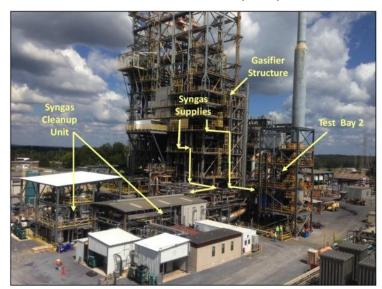
Partnerships re: US/China Clean Energy Research Center, work with IEAGHG R&D Programme, and participate on ISO/TC265 CCS

National Carbon Capture Center (NCCC)

Goal

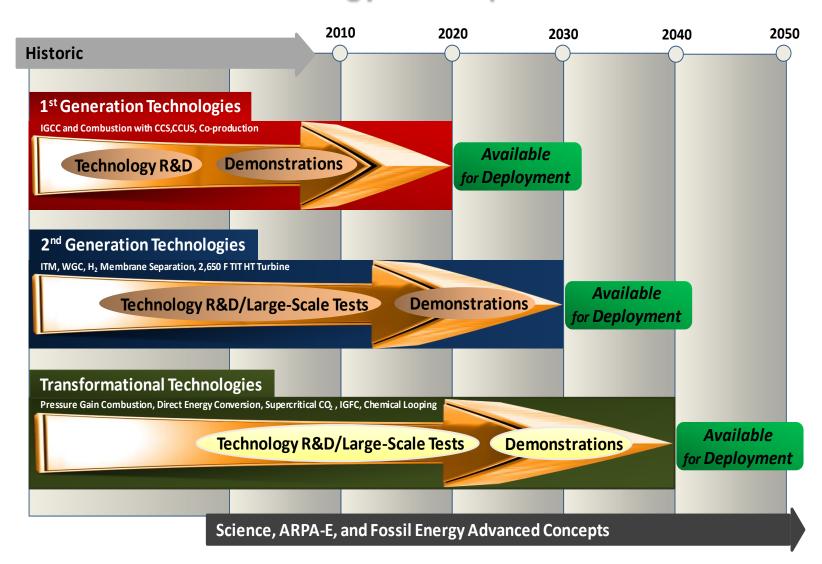
Test technologies under realistic conditions to reduce the cost of CO₂ capture

Advantages


- National resource to validate performance & operations
- Consistent testing procedures & data
- Very good safety & environmental record
- Platform for international partnership & sharing

Status

- New 5 year commitment to operator (Southern Company)
- >20 technologies tested
- 100's of technologies screened



Pilot Solvent Test Unit (PSTU)

Pre-combustion Capture Center

CCRP Technology Development Timeline

Advanced Coal Power Technologies

Aspects Applicable to Natural Gas

Today's IGCC Advanced H₂ Turbines

Syngas Cleanup

Advanced Precombustion Capture Integrated Gasification
Fuel Cells (IGFC)

Pulse Combustion 3100°F H₂
Turbine

Chemical Looping
Gasification

Transformational H2 Production

State-of-the-Art

2nd-Generation

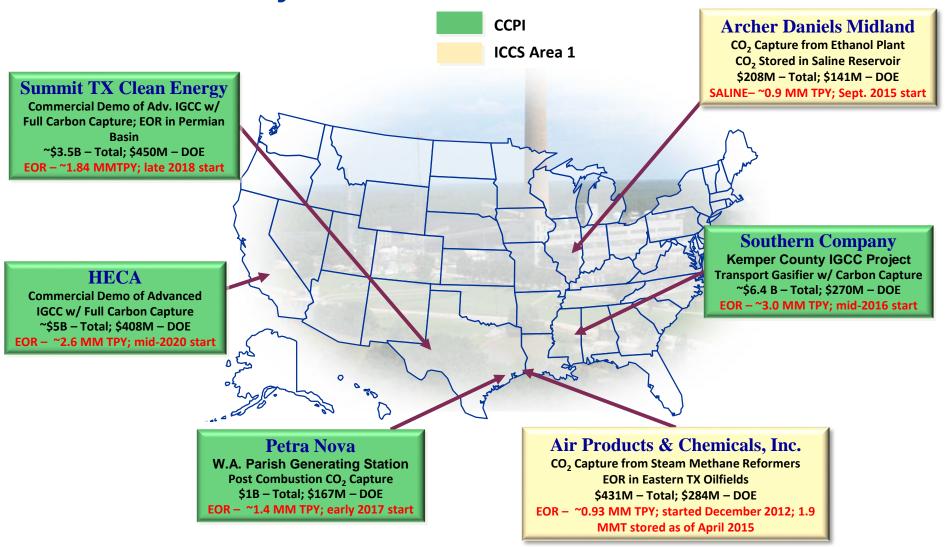
Transformational

Today's Supercritical PC Advanced Ultra-Supercritical (AUSC) PC

Advanced Post-combustion Capture

AUSC Oxycombustion

Transformational CO, Separation


Chemical Looping Direct Power
Combustion Extraction

Supercritical CO₂ Cycles

Pressurized Oxycombustion

Major CCS Demonstration Projects Project Locations & Cost Share

Major Demo Capture & Storage Approaches

	Plant Type		Sequestration			Feedstock	
	Power	Industrial	Saline	EOR	Rate*	reeustock	
Pre-combustion							
HECA (IGCC-Polygen)	х	х		х	2.57	NM Sub-bituminous Coal/Petcoke Blend	
Southern-Kemper Co. (IGCC)	х			Х	3.0	MS Lignite	
Summit Texas (IGCC-Polygen)	Х	х		Х	1.84	WY Sub-bituminous Coal	
Air Products and Chemicals, Inc. (SMR)		х		х	0.925	Natural Gas	
ADM (Ethanol Production)		x	Х		0.900	Corn Fermentation	
Post-combustion							
Petra Nova	х			х	1.4	WY Sub-bituminous Coal	

Clean Coal Power Initiative (CCPI)

^{*}Rate in million metric tons per year

For Additional Information thomas.sarkus@netl.doe.gov

Office of Fossil Energy www.fe.doe.gov

NETLwww.netl.doe.gov

